博客
关于我
FSAF 让网络自己决定实例输出层
阅读量:260 次
发布时间:2019-03-01

本文共 795 字,大约阅读时间需要 2 分钟。

FSAF 模块简介

全称 Feature Selective Anchor-Free Module (FSAF) 是一种用于目标检测的轻量级模块,主要用于 Pyramid Network (FPN) 中的单阶段检测框架。FSAF 模块通过网络自主选择哪一层来预测目标实例,避免了传统方法中对预设锚框 (anchor) 的依赖。

传统一阶段检测框架的实例选择问题

在传统的单阶段目标检测框架中,实例选择通常基于锚框 IOU (Intersection Over Union) 的比较。具体来说,输入图像经过 FPN 后,会与每个特征图中的锚框计算 IOU,选择 IOU 最大的锚框所在的特征图来预测目标实例。例如,汽车实例与 P4 层的第一个锚框 IOU 最大,因此由 P4 层负责输出。

这种方法虽然简单,但依赖于预设锚框,实质上是基于启发式的经验性选择。这种经验性选择是否最优,如何让网络自主决定实例的分类和偏移,成为一个值得探索的问题。

FSAF 模块的设计与架构

为了解决上述问题,FSAF 模块被引入到 FPN 中。该模块通过在原有的两个分支结构中增加两个小分支,分别负责输出分类和偏移信息。与传统方法不同,FSAF 模块完全不依赖锚框,完全由网络自主决定实例的分类和偏移。

FSAF 模块的实例选择机制

FSAF 模块通过对两个新增加的分支进行训练,分别计算分类损失和回归损失。最终,根据两个损失值的总和来判断哪个分支对应的实例损失最小。例如,在上述示意图中,P3 层的 FSAF 模块对汽车实例的损失最小,因此由 P3 层负责该实例的输出。

总结

FSAF 模块通过轻量级的检测子网络辅助传统锚框检测模块,实现了实例选择的自动化。与传统方法相比,FSAF 模块的选择基于网络学习结果,效果显著优于经验性启发式方法。

参考资料

  • 作者:冷夏LX
  • 作者:ChenJoya
  • 作者:孙杨威

转载地址:http://bvzx.baihongyu.com/

你可能感兴趣的文章
Objective-C实现MinHeap最小堆算法(附完整源码)
查看>>
Objective-C实现multilayer perceptron classifier多层感知器分类器算法(附完整源码)
查看>>
Objective-C实现multiplesThreeAndFive三或五倍数的算法 (附完整源码)
查看>>
Objective-C实现n body simulationn体模拟算法(附完整源码)
查看>>
Objective-C实现naive string search字符串搜索算法(附完整源码)
查看>>
Objective-C实现natural sort自然排序算法(附完整源码)
查看>>
Objective-C实现nested brackets嵌套括号算法(附完整源码)
查看>>
Objective-C实现nevilles method多项式插值算法(附完整源码)
查看>>
Objective-C实现newtons second law of motion牛顿第二运动定律算法(附完整源码)
查看>>
Objective-C实现newton_raphson牛顿拉夫森算法(附完整源码)
查看>>
Objective-C实现NLP中文分词(附完整源码)
查看>>
Objective-C实现NLP中文分词(附完整源码)
查看>>
Objective-C实现not gate非门算法(附完整源码)
查看>>
Objective-C实现number of digits解字符数算法(附完整源码)
查看>>
Objective-C实现NumberOfIslands岛屿的个数算法(附完整源码)
查看>>
Objective-C实现n皇后问题算法(附完整源码)
查看>>
Objective-C实现O(E + V) 中找到 0-1-graph 中的最短路径算法(附完整源码)
查看>>
Objective-C实现OCR文字识别(附完整源码)
查看>>
Objective-C实现odd even sort奇偶排序算法(附完整源码)
查看>>
Objective-C实现ohms law欧姆定律算法(附完整源码)
查看>>